首页期刊介绍编委会来稿须知期刊订阅联系我们留言板Email订阅Rss
引用本文:李东阳,常思江,王中原,等.正规形法在弹箭非线性运动分析中的应用[J].国防科技大学学报,2022,44(2):44-54.[点击复制]
LI Dongyang,CHANG Sijiang,WANG Zhongyuan,et al.Applying the method of normal forms to projectile nonlinear motion analysis[J].Journal of National University of Defense Technology,2022,44(2):44-54[点击复制]
【打印本页】   【在线阅读全文】    【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 324次   下载 290次
正规形法在弹箭非线性运动分析中的应用
李东阳1,常思江1,王中原1,魏伟2
(1. 南京理工大学 能源与动力工程学院, 江苏 南京 210094;2. 瞬态冲击技术重点实验室, 北京 102202)
摘要:
    非线性气动力对弹箭运动特性具有重要影响,而其复杂性和有效分析工具的缺乏往往制约了弹箭非线性运动理论的发展。为探索正规形方法在弹箭非线性运动分析中的应用,构造了考虑二次非线性阻尼和七次非线性静力矩下攻角方程的正规形,进而求得攻角的通用解析解,通过数值积分验证了其在较大攻角范围内的有效性,该解析解也同样适用于无阻尼角运动和更高或更低阶静力矩作用下的角运动分析。基于正规形方法导出的初始条件关系,给出了保守但简洁的稳定初始条件范围的计算方法,结合平衡点分析,可较为准确地预测弹箭在非线性气动力作用下形成的极限环及其稳定性。
关键词:  正规形  非线性运动  角运动  弹箭  稳定性
DOI:10.11887/j.cn.202202006
投稿日期:2020-09-22  
基金项目:瞬态冲击技术重点实验室基金资助项目(6142606183107)
Applying the method of normal forms to projectile nonlinear motion analysis
LI Dongyang1, CHANG Sijiang1, WANG Zhongyuan1, WEI Wei2
(1. School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;2. Science and Technology on Transient Impact Laboratory, Beijing 102202, China)
Abstract:
    Nonlinearity especially from aerodynamic coefficients in high orders has a significant effect on projectile dynamics. Its investigation has been hindered in the conventional analysis by the complexity in nonlinear motion equations and the lack of appropriate analysis tools. Therefore, the widely used method of normal forms was introduced for the analysis of projectile angular motion. Considering the second order damping and the seventh order static moment terms, the normal form of the angular motion was derived and thus the universal analytical solution of the angle of attack is obtained, which is verified to show good agreement with the numerical integration results over a wide range of angle of attack and also demonstrates its being applicable to the undamped case and the cases with lower or higher order of static moment. In addition, the obtained relationship between initial conditions can give a conventional but simple determination of the region of attraction to the origin. Also, the amplitude equation combined with the equilibrium analysis provides a accurate prediction for the existence and stability of limit cycle in angular motion.
Keywords:  normal forms  nonlinear motion  projectiles  angular motion  stability
| 手机端
湘ICP备09019258号    版权所有:《国防科技大学学报》编辑部
地址:湖南省长沙市开福区德雅路109号(410073)    电话:0731-87000367     E-mail:journal@nudt.edu.cn
技术支持:北京勤云科技发展有限公司