引用本文: | 胡皓,陈学蕾,孙梓洲,等.高精度轴类零件的砂带确定性修形方法.[J].国防科技大学学报,2023,45(1):167-173.[点击复制] |
HU Hao,CHEN Xuelei,SUN Zizhou,et al.Deterministic figuring method by abrasive belt for high-precision shaft parts[J].Journal of National University of Defense Technology,2023,45(1):167-173[点击复制] |
|
|
|
本文已被:浏览 4359次 下载 3231次 |
高精度轴类零件的砂带确定性修形方法 |
胡皓1,2,3,陈学蕾1,2,3,孙梓洲1,2,3,戴一帆1,2,3,关朝亮1,2,3 |
(1. 国防科技大学 智能科学学院, 湖南 长沙 410073;2. 超精密加工技术湖南省重点实验室, 湖南 长沙 410073;3. 国防科技大学 装备综合保障技术重点实验室, 湖南 长沙 410073)
|
摘要: |
为提高金属轴类零件的加工精度,基于光学确定性加工原理将振动砂带研抛方法用于轴类零件的高精度修形中。在这种方法中,弹性接触轮在一定压力下与轴类工件接触形成一个矩形研抛区域,砂带覆盖在接触轮上,通过接触轮的轴向振动可以实现材料可控去除。利用圆柱度仪测量得到轴零件外圆表面的轮廓形貌,得到被加工零件表面轮廓的误差分布。使用脉冲迭代法计算接触轮在圆柱表面不同位置的驻留时间,通过机床主轴的伺服控制实现工件不同位置材料去除量的大小,从而实现被加工零件圆柱度误差的确定性修整。在经过仿真加工后,在一根45#钢轴的一段柱面上进行了确定性修形实验。结果表明,工件平均圆度误差从0.42 μm收敛至0.11 μm,圆柱度误差从0.76 μm收敛至0.35 μm,加工后的形状精度优于超精密外圆磨床的加工精度,验证了高精度轴类零件柱面上确定性修形的可行性。 |
关键词: 轴类零件 确定性修形 砂带 |
DOI:10.11887/j.cn.202301019 |
投稿日期:2021-02-25 |
基金项目:国家自然科学基金资助项目(51835013,51991371);国家重点研发计划资助项目(2019YFA0708903) |
|
Deterministic figuring method by abrasive belt for high-precision shaft parts |
HU Hao1,2,3, CHEN Xuelei1,2,3, SUN Zizhou1,2,3, DAI Yifan1,2,3, GUAN Chaoliang1,2,3 |
(1. College of Intelligent Science and Technology, National University of Defense Technology, Changsha 410073, China;2. Hunan Key Laboratory of Ultra-Precision Machining Technology, Changsha 410073, China;3. Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, China)
|
Abstract: |
In order to improve the machining accuracy of the metal shaft parts, the vibrating abrasive belt polishing method was innovatively applied to the deterministic figuring of high-precision shaft parts based on the principle of optical deterministic figuring. In this method, the abrasive belt covered the outer surface of the contact wheel, and the elastic contact wheel contacted the shaft workpiece under a certain pressure to form a rectangular grinding area. The removal of materials could be achieved by the axial vibration of the contact wheel. The contour of the shaft′s surface can be measured by cylindricity meter, and the error′s distribution could be obtained. The dwell time of the contact wheel at different positions on cylindrical surface was calculated by pulse iteration method. The material removal quantity at different positions of workpiece was different by servo control of the machine tool′s spindle, thus the cylindricity error could be corrected deterministically. After the simulated machining, the deterministic figuring experiment was carried out on the cylindrical surface of a 45# steel shaft. Experimental results show that the average roundness error of the workpiece converges from 0.42 μm to 0.11 μm, and the cylindricity error of the workpiece improves from 0.76 μm to 0.35 μm. The shape accuracy after machining is better than that of the ultra-precision cylindrical grinder, which verifies the feasibility of high-precision deterministic figuring on the cylindrical surface of shaft parts. |
Keywords: shaft parts deterministic figuring abrasive belt |
|
|
|
|
|