引用本文: | 查淞,夏海洋,黄纪军,等.基于监测数据的电磁频谱地图构建与验证.[J].国防科技大学学报,2023,45(3):171-178.[点击复制] |
ZHA Song,XIA Haiyang,HUANG Jijun,et al.Construction and verification of spectrum map by using monitoring data[J].Journal of National University of Defense Technology,2023,45(3):171-178[点击复制] |
|
|
|
本文已被:浏览 6810次 下载 3701次 |
基于监测数据的电磁频谱地图构建与验证 |
查淞1,夏海洋1,黄纪军1,刘继斌1,马晨2,李冰3 |
(1. 国防科技大学 电子科学学院, 湖南 长沙 410073;2. 中国人民解放军3203;5.部队, 陕西 西安 710060;3. 中国人民解放军3100;7.部队, 北京 100000)
|
摘要: |
提出基于广义回归神经网络拟合和聚类克里金的构建方法,通过趋势面拟合,将电磁频谱地图构建分解为路径衰减和阴影衰落分量的估计问题,以提升构建精度;设计监测数据聚类和自适应最优邻域选取机制,在保证构建精度的条件下减小计算数据量,以提升构建速度,从而利用数量有限的电磁环境监测数据,在不需要先验信息的条件下实现电磁频谱地图的准确、快速构建。设计并实现电磁频谱地图验证系统,搭建车载数据采集设备,利用实测电磁环境监测数据,验证所提方法的可行性及构建性能。 |
关键词: 电磁频谱地图 电磁环境监测数据 广义回归神经网络 聚类克里金 实测数据 |
DOI:10.11887/j.cn.202303019 |
投稿日期:2021-05-21 |
基金项目:国家自然科学基金资助项目(61901486,U19A2058) |
|
Construction and verification of spectrum map by using monitoring data |
ZHA Song1, XIA Haiyang1, HUANG Jijun1, LIU Jibin1, MA Chen2, LI Bing3 |
(1. College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China;2. The PLA Unit 32035, Xi′an 710060, China;3. The PLA Unit 31007, Beijing 100000, China)
|
Abstract: |
A spectrum map construction method based on general regression neural network fitting and clustering Kriging was proposed, in which the path-loss and shadowing components were estimated by general regression nerual network for trend-surface fitting to improve the construction accuracy. In order to improve construction efficiency and guarantee the accuracy meanwhile, monitoring data clustering and optimal neighborhood selection were utilized to reduce the amount of calculated data. The proposed method can realize the accurate and fast construction without prior information by only using limited amount electromagnetic environment monitoring data. A spectrum map prototype verification system was designed and implemented, real measured data from vehicle-based collection system was utilized for testification of the feasibility and performance of the proposed method. |
Keywords: spectrum map electromagnetic environment monitoring data general regression neural network clustering Kriging real measured data |
|
|
|
|
|