引用本文: | 张俊超,黄俊彬,杨德贵,等.极端曝光图像的多尺度分解细节感知融合算法.[J].国防科技大学学报,2024,46(2):162-173.[点击复制] |
ZHANG Junchao,HUANG Junbin,YANG Degui,et al.Multi-scale decomposition based detail perception fusion algorithm for extreme exposure images[J].Journal of National University of Defense Technology,2024,46(2):162-173[点击复制] |
|
|
|
本文已被:浏览 3825次 下载 1717次 |
极端曝光图像的多尺度分解细节感知融合算法 |
张俊超,黄俊彬,杨德贵,梁步阁,陈溅来,赵党军 |
(中南大学 自动化学院, 湖南 长沙 410083)
|
摘要: |
针对极端曝光(欠曝光和过曝光)图像动态范围低的问题,提出一种基于多尺度分解细节感知的图像融合算法。欠曝光图像经过细节增强后,与过曝光图像进行初步的粗融合;采用小波变换对细节增强后图像的亮度分量进行多尺度分解,并设计专门的高频和低频融合策略,实现亮度分量的精融合;将粗融合图像的色调、饱和度分量,与精融合图像的亮度分量重组,获得最终的融合结果。基于大量测试数据,实验结果表明所提方法在视觉效果方面表现优异,平均MEF-SSIM指标为0.985 4,平均SSIM指标为0.650 8,均优于现有主流算法。 |
关键词: 高动态范围 图像融合 多尺度分解 |
DOI:10.11887/j.cn.202402017 |
投稿日期:2022-04-12 |
基金项目:微系统技术重点实验室开发课题基金资助项目(6142804231001);国家自然科学基金资助项目(62105372);湖南省自然科学基金资助项目(2021JJ40794) |
|
Multi-scale decomposition based detail perception fusion algorithm for extreme exposure images |
ZHANG Junchao, HUANG Junbin, YANG Degui, LIANG Buge, CHEN Jianlai, ZHAO Dangjun |
(School of Automation, Central South University, Changsha 410083, China)
|
Abstract: |
Aiming at the problem of the low dynamic range of extreme exposure images, such as underexposure and overexposure images, a detail perception image fusion algorithm based on multi-scale decomposition was proposed. After detail enhancement, the underexposed image was roughly fused with the overexposed image. Wavelet transform was used to perform multi-scale decomposition on the brightness component of the image after detail enhancement, and a special high-frequency and low-frequency fusion strategy was designed to realize the fine fusion of brightness components. The hue and saturation components of the coarse fusion image were recombined with the brightness components of the fine fusion image to obtain the final fusion result. Based on abundant testing data, the experimental results show that the visual effect of this method is excellent. The index of averaged MEF-SSIM is 0.985 4, and the index of averaged SSIM is 0.650 8, which are superior to the existing mainstream algorithms. |
Keywords: high dynamic range image fusion multi-scale decomposition |
|
|
|
|
|