Scramjet engine is one of the most important components of air-breathing hypersonic vehicles, and the research on flame structures in the combustion chamber of scramjet engines plays a significant role in studying the mechanism of flame stabilization of the supersonic combustion. Two-dimensional distributions of CH were measured at a direct connect test facility using the PLIF (planar laser-induced fluorescence) technique to visualize the flame heat-release structures in a cavity-stabilized scramjet combustor. Verification and optimization of the CH-PLIF technique were conducted in a methane/air premixed lowspeed flame generated by a jet flame burner. Two-dimensional distributions of flame heat-release structures in the scramjet combustor were achieved by using the CH-PLIF technique. OH-PLIF images and CH chemiluminescence images were also performed in the scramjet combustor to compare these images with the CHPLIF images. Experimental results show that the heat-release zones of the low-speed premixed jet flames can become distorted, wrinkled and separated. The heat-release zones are highly wrinkled with the increasing Reynolds numbers. The heat-release zones with a thickness of 0.5~6.5 mm in the cavity-stabilized scramjet combustor become highly distorted and wrinkled, and the separation of the heat-release zones can be observed. It is found that the CH-PLIF technique is able to visualize the heat-release zones in cavity-stabilized scramjet combustors and can play a promising role in understanding cavity stabilization mechanisms of the supersonic combustion.
Reference
Related
Cited by
Get Citation
LIANG Jianhan, LI Yun, SUN Mingbo, WU Ge, ZHU Jiajian, GAO Qiang, LI Bo. CH-PLIF imaging of flame heat-release structures in supersonic combustion[J]. Journal of National University of Defense Technology,2019,41(1):27-33.