Advance on calculation methods of fluid-solid coupled heat transfer with regenerative cooling system
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

V43

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Fluid-solid coupled heat transfer is regarded as a key challenge in the refined design of regenerative cooling thermal protection systems. From the perspective of fluid-solid heat transfer, the calculation methods for heat transfer between hot gas and the solid chamber wall were introduced, the heat transfer calculation methods of coolants within cooling channels were presented, and the special factors affecting heat transfer between the coolant and the wall were analyzed, including secondary flow, supercritical effects, and cracking characteristics, etc. For regenerative cooling systems, three fluid-solid coupled heat transfer calculation methods were proposed: the whole-domain solution method, the partition solution method based on correlation criteria, and the partition solution method based on continuity boundary conditions. In the field of unsteady heat transfer, the research progress of fluid-solid coupled unsteady calculation methods was reviewed, and the possible future development directions of this field were preliminarily discussed.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 20,2024
  • Revised:July 07,2025
  • Adopted:June 03,2025
  • Online: July 08,2025
  • Published:
Article QR Code