Two-dimensional α-In2Se3 based Photodetectors for Tunable and Broadband Polarization Response via Thickness Regulation
CSTR:
Author:
Affiliation:

Clc Number:

TN364+.3

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    A modified physical vapor deposition method for the controllable growth of α-In2Se3 was proposed, and the broad-spectrum response performance of three thicknesses of α-In2Se3 nanosheets in the visible to near-infrared wavelength range was systematically studied. The results indicate that the thickness of α-In2Se3 nanosheets can significantly regulate the photoelectric performance, and the photoresponsivity and specific detection rate increase with increasing thickness. In addition, it was found that the α-In2Se3 with a thickness of 32.8 nm exhibited a photocurrent anisotropy ratio (dichroic ratio) of 4 at 635 nm, indicating good polarization-sensitive detection functionality. In summary, the two-dimensional α-In2Se3 prepared by the physical vapor deposition method demonstrates a wide visible-infrared spectral response and good polarization detection ability, making it an ideal candidate material for two-dimensional multifunctional optoelectronic devices.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 06,2025
  • Revised:July 02,2025
  • Adopted:April 28,2025
  • Online: July 08,2025
  • Published:
Article QR Code