Optimization Methods for Key Elements in Intelligent Diagnosis of Open-Circuit Faults in Power Electronic Inverters
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

TM93

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To address the challenges of intelligent diagnosis for open-circuit faults in power electronic inverters, such as the lack of actual fault samples and the issue of varying characteristic adaptability, a set of optimization methods was proposed from two key intelligent elements: data and algorithm, to support the practical applications of intelligent diagnosis for open-circuit faults in power electronic inverters. For the data element, a fault sample amplification method based on inverters′ characteristics was proposed, which finds out the minimum number of practical samples required for model training. For the algorithm element, an attention-enhanced method and a frequency points adaptive training method for the diagnosis model were proposed, which significantly improve model training effectiveness and diagnosis accuracy under wide-frequency inverter operation. The effectiveness of the proposed optimization methods for the intelligent elements was validated by experiments.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 27,2025
  • Revised:September 18,2025
  • Adopted:September 18,2025
  • Online: September 29,2025
  • Published:
Article QR Code