摘要
为提高水库位移形变预测精度,通过改变变分模态分解(variational mode decomposition,VMD)的分解方式,融合VMD与长短期记忆网络对非线性非平稳的水库位移形变进行预测,提出了一种混合变分模态长短期记忆网络(mix variational mode decomposition long short-term memory,MVMDLSTM)模型预测方法;对不同单一预测模型与组合模型采用多源数据集验证新方法的可靠性。实验结果表明:MVMDLSTM模型能有效减弱单一预测模型与经验模态分解组合模型估计的偏差,MVMDLSTM模型预测精度更优,为稳定监测水库慢滑移和蠕动等微小变形预测预警提供有效的数据决策。
Abstract
In order to improve the prediction accuracy of the displacement and deformation of reservoir, the displacement and deformation of non-linear and non-stationary reservoir was predicted by changing the decomposition method of VMD(variational mode decomposition) and integrating VMD and long short-term memory. A MVMDLSTM (mixed variational mode decomposition long short-term memory) model prediction method was proposed. The reliability of the new method was verified with multi-source datasets for different single prediction models and combined models.The experimental results show that the MVMDLSTM model can effectively attenuate the bias of the single prediction model and the empirical mode decomposition combination model estimation, and the prediction accuracy of the MVMDLSTM model is better, which provides an effective data decision-making for the stable monitoring of the prediction and warning of the reservoir′s slow sliding and creeping and other small deformations.
据统计,我国建设的各类型大坝包括水库大坝等已累计约10万座,对水库大坝的监测类型包括表面位移、浸润线、库水位、雨量、最小干滩、内部位移、渗流等,精准预测水库表面位移形变对确保洋河水库安全运营具有非常重要的意义。
水库大坝监测设备和监测数据随着监测范围的扩大而越来越庞大,使用传统的监测和管理模式工作量特别大,且受天气等各种因素影响,难以做到实时监测。全球导航卫星系统(global navigation satellite system,GNSS)具有高精度、多功能、全天候、高效率、广应用、易操作、自动化等特点,随着GNSS技术精度的不断提升,GNSS在灾害监测预警、防范中起到了重要作用[1]。
GNSS大坝变形数据时间序列具有明显的多尺度特征且为非平稳时间序列,文献[2]通过经验模态分解(empirical mode decomposition,EMD)与径向基函数(radial basis function,RBF)神经网络方法探讨了大坝非线性周期信号变化的内在规律,RBF方法可提升精度50%以上且泛化能力强。文献[3]将大坝在不同时段的位移数据作为一时间序列,通过本身数据时间进行形变预测。文献[4-5]通过集合经验模态分解(ensemble empirical mode decomposition,EEMD)方法对大坝、边坡进行预测,但分解的分量个数随机,分解层数偏大而导致数据泄露。文献[6]提出了自适应EMD方法,分析20世纪90年代的非线性和非平稳过程。EMD方法基于时间序列的局部性质,适应性地、有效地将时间序列分解为具有不同频带的稳态本模函数和残差,EMD的有效性已经在非线性和非平稳过程的分析中得到了广泛的应用[7],但EMD的应用过程中仍存在一些局限性,如模式混合问题。长短期记忆网络(long short-term memory,LSTM)能够有效地解决循环神经网络中间隔较长的预测时间序列,涌现新颖的预测框架处理时间序列预测问题[8-10]。文献[11]结合变分模态分解(variational mode decomposition,VMD)和LSTM的预测模型,累加各模态分量的预测值完成重构,通过试凑法确定分割窗口长度,但选择的序列较短,无法解决水库长时间位移形变序列的非平稳、非线性问题。
因此,为实现水库大坝长时间序列的位移形变预测,本文提出一种改进的混合变分模态长短期记忆网络(mix variational mode decomposition long short-term memory,MVMDLSTM)模型预测方法,通过改进的VMD将水库表面位移序列进行分解重构为干净的序列,将其作为特征值代入LSTM进行预测,同时利用不同数据集与组合模型方法,如基于人工神经网络(artificial neural network,ANN)的VMDANN等模型验证MVMDLSTM模型预测的有效性与稳定性。通过改进MVMDLSTM法对位移形变监测数据进行预测,建立多尺度形变预测模型,可提高水库位移形变预测精度及计算结果的可靠性,为建立水库大坝预测与预警决策模型、加强系统管理及安全运营提供了科学有效的解决方法。
1 模型构建
1.1 变分模态分解
变分模态分解VMD是一种通过迭代寻找变分模型最优解,确定各分量的中心频率和有限带宽的内涵模态分量(intrinsic mode functions,IMF),从而自适应地实现信号的频域划分和各分量有效分离的一种信号分解方法。通过VMD得到了k阶特征模函数的表达式[12],即
(1)
(2)
其中:Fu为uk(t)函数;Ak(t)为uk(t)的瞬时振幅;k=1,2,···,K;Fω为ωk(t)函数,ωk(t)为uk(t)的中心频率;φk(t)为非单调递减的相位函数。通过Hilbert变换得到uk(t)的解析信号,从而获得单边频谱[13],即
(3)
式中,δ(t)为脉冲函数,j表示该时刻。通过调整每个uk(t)的中心频率ωk(t),并将其与各模式的单边频谱混合,得到基带信号:
(4)
计算解调信号梯度,得到解调信号的带宽,并建立以下约束变分模型表达式[14]:
(5)
(6)
其中:f表示为f(t),代表输入信号;{μk}={μ1,μ2,···,μk}为k个模态分量,{ωk}={ω1,ω2,···,ωk}为k个模态分量对应的频率中心。再引入二阶惩罚因子与拉格朗日乘子转换为无约束变分问题,得到的扩展拉格朗日表达式如下:
(7)
式中,α为惩罚因子,λ(t)为拉格朗日乘子,“〈,〉”表示内积。用乘子交替方向法不断交替更新,当满足公式
(8)
迭代结束,得到k个模态分量值。其中ε为收敛容差。
1.2 人工神经网络
人工神经网络ANN是对人脑神经网络的某种抽象、简化和模拟后建立的复杂网络结构。建立包含输入层、隐含层和输出层的神经网络结构是机器学习的主要工具之一,ANN结构如图1所示[15]。

图1ANN结构示意图
Fig.1ANN structure diagram
1.3 长短期记忆网络
Jonathans首次提出长短期记忆网络LSTM是一种改进的循环神经网络[16](recurrent neural networks,RNN),能够有效地解决循环神经网络中间隔较长的预测时间序列[17],但其尚未被应用于洋河水库表面位移形变预测中。LSTM结构示意图[11]如图2所示。

图2LSTM结构示意图
Fig.2Schematic diagram of LSTM structure
时间序列从输入层开始,经LSTM 层,到达连接层,最后预测输出,hi为隐藏状态,Ci为单元状态。单个LSTM Block模块如图2所示,包括输入门i、单元状态g、遗忘门f及输出门o,其数学模型为:
(9)
式中,W为各单元权重矩阵,[xt,ht-1]为两个方向构成的长向量,b为偏置矩阵,σ表示sigmoid函数。
1.4 MVMDLSTM模型构建
水库位移时间序列是一组非线性的时间序列,如果从原始站时间序列直接进行预测,会引起较大误差,而VMD能更好更有效地提取时间序列的特征值。为了降低水库位移时间序列的非线性变化,本文融合VMD与LSTM模型建立预测精度较高的MVMDLSTM模型。
将一维水库位移序列进行VMD分解,得到k个子序列,原始序列定义[11] 为:
(10)
设前m组序列为训练集与验证集,表示为XTk,则XTk表示为:
(11)
余下n-m组序列作为测试集,表示为XCk,则XCk表示为:
(12)
对原始时间序列进行分割,设置分割长度为L,则分割后序列为:
(13)
设XTk的输入为X′Tk,XTk输出为Y′Tk,其表达式为:
(14)
(15)
设XCk输入为X′Ck,XCk输出为Y′Ck,其表达式为:
(16)
(17)
将水库位移序列进行VMD分解后得到a个模态分量与残差r值,通过不同参数K值得到相应的模态分量,将分解后得到的模态分量相加得到融合后的模态分量MIXIMF;再将原时间序列的测试集按列合并得到融合的VMD,表示为MIXVMD;将MIXVMD作为模型特征代入LSTM进行预测。为了验证MVMDLSTM的预测精度,同时将MIXVMD作为模型特征代入ANN进行对比预测,并对预测结果进行精度分析。本文构建的MVMDLSTM预测模型框架如图3所示,MVMDLSTM模型设计参数如表1所示。

图3MVMDLSTM 预测模型框架图
Fig.3MVMDLSTM prediction model framework diagram
表1MVMDLSTM 预测模型设计参数
Tab.1 Design parameters of MVMDLSTM prediction model

1.5 精度评价指标
采用均方根误差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)两个指标进行评价,数学模型[18]为:
(18)
(19)
其中,yi为原始位移序列,为各模型的预测结果,n为水库数据数量。RMSE、MAE值越小代表该模型预测精度越高,反之,则说明该模型预测精度较低。为了判断MVMDLSTM模型预测精度的效果,本文设Q表示精度提升幅度,O与O′分别表示初始模型和组合模型(即优化后的模型)的精度评价指标(如RMSE、MAE),Q越大说明组合模型提升幅度越大。则Q数学表达式为:
(20)
2 实例分析
为验证MVMDLSTM模型预测精度的效果,以洋河水库2014年9月—2022年11月的表面位移形变数据为例,以天为观测间隔,观测方向包括北方向N、东方向E及垂向U。利用水库迎1A、副坝26G、马13A三个站点的数据集,经预处理后将3 000组数据进行分割,前2 400组为训练集、中间300组为验证集、后300组为测试集,采用RMSE、MAE进行预测精度评价。因数据量较大,所用设备处理器为i7-12700H,CPU为2.70 GHz,机带RAM为32 GB的64位Windows11系统。
2.1 单模型预测分析
本文所用MVMDLSTM模型为组合模型,为了对比组合模型预测精度的效果,采用RNN、ANN与LSTM的单一模型进行对比,以迎1A站为例,RNN、ANN与LSTM测试集预测北方向N、东方向E及垂向U结果曲线如图4所示。
图4中95%预测带表示拟合后该模型预测结果包含95%数据点的区域。由图可知,单一RNN、ANN与LSTM模型在北方向、东方向预测结果具有一定的偏差,RNN、ANN与LSTM模型预测的结果曲线在原始序列基础上下移,尤其在垂向下移明显,预测结果不理想。单一模型预测精度评价如表2所示。
由表2可知,单一模型预测精度在垂向变化较大,且LSTM模型预测结果精度更好。如马13A站垂向LSTM 模型的RMSE(1.37 mm)比ANN模型的RMSE(2.19 mm)降幅达37.4%;ANN在部分场景下表现较差,如副坝26G站东方向ANN模型的RMSE(1.27 mm)与LSTM模型的RMSE(0.66 mm)相比误差接近2倍;在马13A站垂向,ANN模型(RMSE为2.19 mm)与RNN模型(RMSE为2.24 mm)误差相近,说明单一ANN与RNN模型难以处理非线性时序特征。LSTM的RMSE和MAE在北方向与东方向普遍低于RNN和ANN模型,在垂向的改进尤为显著。

图4三方向预测结果曲线分布
Fig.4Curve distribution of predicted results in three directions
表2不同单一模型预测精度
Tab.2 Prediction accuracy of different single model

综上图4与表2可知,在大坝形变预测中优先采用LSTM模型,且预测精度更高。但单一模型RNN、ANN与LSTM模型均不能准确预测水库位移序列,预测结果与原始位移序列拟合度较差。
2.2 MVMDLSTM预测分析
2.2.1 参数K值选取
VMD参数K的选取是解决变分问题最优解的重要步骤,为了取得更好的预测精度,以北方向迎1A站位移序列为例,不同K值预测结果误差如图5所示,各站点α取值见表3。
本文通过网格搜索的方法对MVMDLSTM模型中K值进行选取,当K值过大时会造成模型载荷的梯度上升,影响预测效果。由图5可知,当K=4、α=196时,MVMDLSTM模型预测的均方根误差为0.46 mm,平均绝对误差为0.36 mm,MVMDLSTM模型预测精度最高。

图5不同参数K值误差对比
Fig.5Comparison of errors for different parameters K
表3K=4时不同方向的α值
Tab.3 Values of α in different directions for K=4

2.2.2 VMD组合模型结果分析
单一模型均不能准确预测水库位移序列,预测结果与原始位移序列拟合度较差。本文构建VMD与不同预测模型进行验证,组合模型为VMDANN、VMDRNN与VMDLSTM。特别注意的是,目前组合算法中将VMD与LSTM进行融合时,先将训练集、验证集与测试集一同分解,再对分解后的各模态分量代入模型进行预测,然后将各分量预测结果相加得到最终预测结果;而本文的新算法是将分解后得到的模态分量相加得到融合后的模态分量MIXIMF,再将原时间序列的测试集按列合并得到融合的MIXVMD。VMDLSTM与MVMDLSTM评价指标如图6所示。

图6VMDLSTM与MVMDLSTM评价指标对比
Fig.6Comparison of evaluation indicators between VMDLSTM and MVMDLSTM
由图6可知,VMDLSTM模型在北方向、东方向、垂向预测的均方根误差与平均绝对误差值均虚高,如果采用VMDLSTM模型有两点不足[19-20]:①训练集、验证集与测试集数据一同进行VMD会导致训练集中数据大小受到测试集中数据的影响,相当于测试集中数据已知,造成信息泄露;②训练集、验证集与测试集数据一同进行VMD后的各模态分量及残差与原数据起伏波动相差较大且相关性较弱。本文之后不再将VMDLSTM模型与其他组合模型进行对比分析。
洋河水库位移时间序列具有非线性非平稳的特性,采用单一的RNN、ANN与LSTM模型会影响预测精度,可能导致预测结果产生偏差。VMD能将复杂的位移序列进行分解,再通过LSTM训练,重构序列从而获取更高的精度。为进一步验证MVMDLSTM模型的有效性与可靠性,本文将VMD分解后数据作为特征值代入RNN、ANN模型以构建VMDRNN、VMDANN组合模型,对比三个站不同方向不同组合模型预测效果,以马13A为例,不同组合模型预测曲线如图7所示。

图7不同VMD组合模型预测结果曲线
Fig.7Prediction result curve of different VMD combination models
由图7组合模型预测结果曲线可知,MVMDLSTM组合模型三方向预测结果曲线与原序列曲线较为拟合。VMDRNN组合模型结果曲线在三方向上比原序列整体呈现向下偏移的趋势,但在北方向175 d出现增大的情况,可能与站点所在地理环境有关。VMDANN组合模型结果曲线在北方向与垂向上比原序列向下偏移,但在东方向[100 d,300 d]区间内结果曲线比原序列向上偏移,说明VMDANN模型表现不稳定,预测结果偏差较大。
表4为不同组合模型的评价指标。对比VMDRNN组合模型,采用MVMDLSTM模型对马13A站北方向、东方向、垂向预测结果RMSE值降低了约21%、49%、43%,MAE值降低了约33%、44%、41%;对比VMDANN组合模型,采用MVMDLSTM模型对马13A站北方向、东方向、垂向预测结果RMSE值降低了约20%、48%、60%,MAE值降低了约24%、43%、61%。由此证明了MVMDLSTM模型比VMDRNN、VMDANN组合模型预测效果更好。
表4不同组合模型的评价指标
Tab.4 Evaluation indicators of different combination models

综上所述,MVMDLSTM模型在北、东、垂向的RMSE和MAE值均优于VMDRNN与VMDANN组合模型,表明VMD分解有效降低了非平稳非线性序列的预测难度,通过“分解—预测—重构”,MVMDLSTM显著提升了水库位移预测精度,验证了该模型在复杂时序建模中的可靠性。
2.2.3 LSTM组合模型结果分析
EMD的有效性已经在非线性和非平稳过程的分析中得到了广泛应用,为进一步验证MVMDLSTM方法的可靠性,本文构建EMDLSTM与EEMDLSTM模型,将EMD与EEMD分解后的IMF值代入LSTM预测模型中重构。以迎1A站北方向为例,EMD与EEMD部分模态分量如图8所示,不同组合模型的预测结果曲线分布如图9所示。

图8EMD与EEMD方法分解的模态分量
Fig.8Modal components decomposed by EMD and EEMD methods
由图9可知,MVMDLSTM模型的预测曲线更加拟合于原序列。以迎1A站为例,EMDLSTM模型在三方向上结果曲线比原序列向下偏移,而EEMDLSTM模型在北方向与垂向结果曲线比原序列整体向上偏移,但在东方向上结果拟合曲线向下偏移,说明模型难以处理非线性时序特征。不同模型预测结果指标评价如表5所示。MVMDLSTM的RMSE与MAE值均低于LSTM、EMDLSTM与EEMDLSTM的。在副坝26G站的垂向上,EMDLSTM的RMSE甚至达到3.25 mm,说明通过EMD分解后的特征值经LSTM网络训练后导致预测结果偏大,进一步证明了MVMDLSTM模型预测结果的有效性与可靠性。

图9不同LSTM组合模型预测结果曲线
Fig.9Prediction result curve of different LSTM combination models
对比LSTM模型,MVMDLSTM模型的分解与重构能更好地拟合原序列,预测结果更可靠。以迎1A站为例,图10为LSTM与MVMDLSTM预测结果曲线,表6为MVMDLSTM相比LSTM的精度指标评价提升度。
表5顾及LSTM的组合模型评价指标
Tab.5 Evaluation indicators of combination model considering LSTM

图10中LSTM与MVMDLSTM模型预测集拟合相比,MVMDLSTM模型在迎1A站北方向、东方向、垂向上的预测结果曲线与原序列拟合效果更好,原序列经分解—重构后预测的数据集更接近于原序列。由表6可得,垂向迎1A站MVMDLSTM模型比LSTM模型预测精度RMSE与MSE值的Q值分别为59.8%、58.9%,其他站在不同方向均有所提升,证明了MVMDLSTM组合模型相比LSTM模型预测的优越性,且具有良好的动态特征。
综上所述,本文提出的MVMDLSTM模型不仅解决了VMDLSTM模型中存在的信息泄露等问题,且对LSTM模型中预测结果与原始数据偏差较大问题进行了改正。MVMDLSTM模型相比不同VMD组合模型及LSTM组合模型预测结果较优,可见该模型具有较强的适应性。

图10LSTM与MVMDLSTM预测结果曲线
Fig.10Prediction result curve of LSTM and MVMDLSTM
表6精度指标评价提升度
Tab.6 Precision index evaluation improvement degree

3 结论
本文通过融合VMD与LSTM算法对非线性非平稳的洋河水库位移形变进行预测,提出了一种混合变分模态长短期记忆网络MVMDLSTM模型。针对非平稳的洋河水库位移序列,通过引入VMD分解改善水库位移时间序列的非线性,构建了VMDRNN、VMDANN、EMDLSTM、EEMDLSTM组合模型,且与单一模型RNN、ANN、LSTM模型进行对比分析,得出以下结论:
1)采用单一的RNN、ANN与LSTM模型会影响预测精度,可能导致预测结果产生偏差。与RNN、ANN预测模型相比,LSTM模型的测试集预测精度更高,证明了LSTM模型对非线性非平稳的大坝位移形变时间序列预测的优越性,验证了MVMDLSTM组合模型的有效性。
2)引入VMD能将复杂的位移序列进行分解,通过LSTM训练后重构序列从而获取更高的精度。VMDRNN在北方向与垂向上预测曲线比原序列整体向下偏移,VMDANN在东方向[100 d,300 d]区间内结果曲线比原序列向上偏移,MVMDLSTM组合模型预测结果曲线与原序列曲线较为拟合,说明了MVMDLSTM模型预测的有效性。
3)构建EMDLSTM与EEMDLSTM模型,将EMD与EEMD分解后的IMF值代入LSTM预测模型中重构,组合模型预测的结果评价指标RMSE达到3.25 mm,说明通过EMD分解后的特征值经LSTM网络训练后导致预测结果偏大,进一步说明了MVMDLSTM模型预测结果的可靠性。
4)相比LSTM模型,MVMDLSTM模型在三方向上预测精度均有提升,在垂向站点预测结果RMSE与MAE的Q值最大分别为67.6%、66.4%,证明了MVMDLSTM模型预测的优越性,为监测位移形变研究提供了可靠的数据资料。
致谢
江西师范大学胡顺强博士在预测模型代码编程工作方面提供了帮助和指导,谨致谢意!