厚度调控的二维α-In2Se3可调谐宽谱偏振光电探测器
doi: 10.11887/j.issn.1001-2486.25010007
舒胜1 , 李京波2 , 高伟1 , 杨孟孟1
1. 华南师范大学 电子科学与工程学院(微电子学院),广东 佛山 528225
2. 浙江大学 光电科学与工程学院,浙江 杭州 310027
基金项目: 国家自然科学基金资助项目 (62004071) ; 广东省基础与应用基础研究基金资助项目(2022A1515110981)
Two-dimensional α-In2Se3based photodetectors for tunable and broadband polarization response via thickness regulation
SHU Sheng1 , LI Jingbo2 , GAO Wei1 , YANG Mengmeng1
1. School of Electronic Science and Engineering (School of Microelectronics), South China Normal University, Foshan 528225 , China
2. College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027 , China
摘要
目前针对α-In2Se3的厚度与光电性能之间关系的关注较少,且大部分研究是围绕机械剥离的α-In2Se3纳米片,不利于未来产业应用。因此,提出一种可以可控生长α-In2Se3的改良型物理气相沉积法,系统地研究了三种厚度α-In2Se3纳米片在可见光到近红外波段的宽谱响应性能。结果表明,α-In2Se3纳米片厚度可以显著调节光电性能,光响应度和比探测率随厚度增大而增大。此外,发现厚度32.8 nm的α-In2Se3纳米片在635 nm处的光电流各向异性比(二向色比)为4,具有良好的偏振敏感探测功能。综上所述,物理气相沉积法制备的二维α-In2Se3具有可见—红外宽谱响应和较好的偏振探测能力,是二维多功能光电器件的理想候选材料。
Abstract
In current research, less attention has been paid to the relationship between the thickness and optoelectronic properties of α-In2Se3, and most research has been focused on the mechanical exfoliation of α-In2Se3 nanosheets, which is not conducive to future industrial applications. A modified physical vapor deposition method for the controllable growth of α-In2Se3 was proposed, and the broad-spectrum response performance of three thicknesses of α-In2Se3 nanosheets in the visible to near-infrared wavelength range was systematically studied. The results indicate that the thickness of α-In2Se3 nanosheets can significantly regulate the photoelectric performance, and the photoresponsivity and specific detection rate increase with increasing thickness. In addition, it was found that the α-In2Se3 with a thickness of 32.8 nm exhibited a photocurrent anisotropy ratio (dichroic ratio) of 4 at 635 nm, indicating good polarization-sensitive detection functionality. In summary, the two-dimensional α-In2Se3 prepared by the physical vapor deposition method demonstrates a wide visible-infrared spectral response and good polarization detection ability, making it an ideal candidate material for two-dimensional multifunctional optoelectronic devices.
在过去的几十年里,石墨烯、六方氮化硼(hexagonal boron nitride,h-BN)、黑磷(black phosphorus,BP)和过渡金属硫化物材料原子的厚度的减小使得微观粒子能量的量子化现象更加明显,在下一代高性能纳米电子和光电子器件中得到了广泛的应用[1-2]。在纳米尺度下,光子与电子的行为受到量子力学的限制。一些经典物理学规律在纳米结构中不再适用。量子限域效应会导致电子在纳米结构中的能带结构变得更加复杂,这使得一些纳米材料具有与宏观材料不同的导电性能[3]。纳米结构中电子和光子之间发生相互作用,产生量子共振现象,表现出独特的光电特性,为光电子微纳器件创新和应用提供了更多可能性。
厚度的减小涉及材料的带隙问题。有许多具有可调带隙的二维半导体材料,例如过渡金属硫化物,由于其卓越的光学特性、灵活性和室温下的高稳定性,它们在下一代光电器件的发展中具有巨大的潜力[4]。对于大多数层状二维半导体,材料的带隙取决于原子层数。二硫化钼、硒化钼、二硫化钨和硒化钨等过渡金属硫化物近年来得到了广泛的研究,并表现出优异的光探测性能。当这些材料减少到单层时,将会成为直接带隙半导体,这一显著特征使它们非常适合于光电转换应用[5]。然而,对于单层过渡金属硫化物而言,由于其原子厚度薄,往往表现出较差的光吸收能力。与许多其他过渡金属硫化物相比,ⅢA-ⅣA 族二维材料α相三硒化二铟(2H indium selenide,α-In2Se3)在少层中表现出直接带隙,随着厚度的变薄而表现出间接带隙。具有直接带隙的少层α-In2Se3在可见光和近红外光(near infrared,NIR)照射下具有较高的光吸收系数和高光电子空穴对产生效率,继而表现出优异的光电性能[46]。此外,二维α-In2Se3中铁电性的发现引发了对其纳米结构和相关先进功能器件研究的一波新的科学兴趣[7-8]。目前大多数二维α-In2Se3光电器件材料都是基于机械剥离得到的纳米片,这种方法无法精确控制纳米片的厚度和均匀性[9]。本研究提出了一种以高纯度In2Se3粉末为前驱体的改良型物理气相沉积(physical vapor deposition,PVD)方法,制备了较大尺寸、高质量、不同厚度的层状α-In2Se3纳米片;并且制备了三种不同厚度的金属-半导体-金属结构α-In2Se3基光电探测器,研究了其光电性能和偏振光探测能力的变化规律,证明了制备的α-In2Se3具有各向异性光吸收能力和可调光电性能。
1 样品制备及表征
以In2Se3粉末(99.99%,阿法埃莎(中国)化学有限公司)为生长前驱体,以10 mm×10 mm大小的新鲜预剥离氟基云母为衬底,以氩气为气相载体。如图1(a)所示,生长前在水平石英玻璃器皿表面放置0.1 g的In2Se3粉末,在粉末上方夹角放置云母衬底。加热前,用氩气吹扫石英管2 min,以清除石英管内的多余空气,并重复充放氩气2~3次的步骤。然后,在流动的载气中以20℃/min的速度将炉加热到850℃,并通过严格把控保温时间的方式(3~5 min)来实现不同厚度的α-In2Se3纳米片的高质量制备。生长后,将样品自然冷却至室温进行材料表征:利用光学显微镜(ECLIPSE LV150N,Nikon)对云母上的α-In2Se3纳米薄片冷却后的形貌进行了表征,如图1(b)~(d)所示,制备了较大尺寸的In2Se3纳米片。进一步对样品的成分进行分析,将其转移至微栅上进行透射电子显微镜(transmission electron microscope,TEM)表征。通过能谱分析仪(energy dispersive spectrometer,EDS)对电子束照射样品产生的特征X射线进行分析,获取被测样品元素信息。由图1(e)的面扫描结果可以看出,In与Se的摩尔比约为2 ∶3,且样品中元素是均匀分布的。利用激光波长为532 nm的共聚焦显微镜进行了拉曼光谱分析,如图1(f)所示。拉曼光谱中67 cm-1、111 cm-1、176 cm-1和208 cm-1处的峰归属于E、A(LO+TO)、A(LO)和A(TO)声子模式,A1(LO+TO)分裂出LO和TO峰揭示了2H α-In2Se3的反转对称性被打破,进一步验证了2H α-In2Se3在声子振动、电子输运和光响应方面有望具有各向异性[10-11]
1α-In2Se3的生长与材料表征图像
Fig.1Growth and material characterization of α-In2Se3
2 光电探测器结构及光电测试
2.1 α-In2Se3光电探测器结构及表征
进一步在SiO2/Si衬底上进行了以下光电实验。通过对SiO2/Si衬底上构建的α-In2Se3基晶体管进行测试,进一步研究了晶体管的各项光电性能。器件示意图如图2(a)所示。首先,利用聚甲基丙烯酸甲酯(polymethyl methacrylate,PMMA)辅助湿法转移方法将生长得到的云母衬底α-In2Se3纳米片转移到300 nm厚SiO2的高掺杂P型Si衬底上。根据不同金属与α-In2Se3接触的电子测试结果,选择Cr/Au作为源漏金属电极[12]。如图2(b)~(c)所示,通过激光直写光刻设备和电子束蒸发镀膜仪制备了50 nm Cr/Au为源漏电极的晶体管。电极形状设计考虑了源漏电极的对称性,使实际测试更接近欧姆接触。此外,通过原子力显微镜(atomic force microscope,AFM)测定三种不同厚度的α-In2Se3光电晶体管的厚度,如图2(d)~(f)所示。α-In2Se3的厚度分别为10.3 nm、32.8 nm和50.4 nm,代表了后文中三种不同厚度晶体管所用α-In2Se3纳米片的实测厚度。
2α-In2Se3光电探测器的光学图像和AFM表征图
Fig.2Optical image and AFM characterization of α-In2Se3 photodetector
2.2 光电性能测试
宽谱光响应α-In2Se3光电探测器的研究将会为实现宽光谱探测提供新的技术路径与理论依据。为了研究PVD生长的α-In2Se3的光响应特性,制备了不同厚度的α-In2Se3光电器件,并进行了系统的光电性能测试。在测试过程中,漏源偏置电压Vds的范围为-1~1 V。如图3(a)所示,用三种不同厚度的α-In2Se3光电探测器在固定光照强度(约68 mW/cm2)条件下测试,均能在405 nm至808 nm的光波长范围内产生光响应。光态下的电流-电压(I-V)曲线相较于暗态有明显的电流量级差,且随着α-In2Se3厚度的增加,光暗电流量级跨越也显著增大。总体来说,当厚度从10.3 nm增加到50.4 nm时,光电流可从10-9 A提升至10-5 A。
在外部施加电压Vds=1 V的条件下,进一步测试了32.8 nm α-In2Se3器件在不同波长光照下的实时光响应特性。如图3(b)所示,该器件在可见光波长范围内表现出更为明显的光响应,随着波长向近红外光区域移动,光响应逐渐减弱。这表明α-In2Se3光电探测器在可见光及部分近红外光区域具有良好的光开关性能。
为进一步探究光照强度对光电探测器性能的影响,选取了32.8 nm α-In2Se3器件,在不同功率密度的635 nm激光照射下进行了测试。如图3(c)所示,Ids-Vds曲线表明器件的电流随光照强度的增加而显著增加。这一结果表明,光照强度的增加能够有效促进载流子的产生与传输。在整个实验中,为了提高器件的循环寿命,选择了较低的外加电压(Vds =1 V)来减小因电流过大引起的热效应[13]。随着α-In2Se3厚度从多层到少层的变化,其带隙由直接变为间接,光电流量级也随着光生载流子捕获能力的显著降低而逐渐减小。
图3(d)所示,在光功率密度为0.022~79.21 mW/cm2的635 nm光照射下,偏置电压Vds=1 V的光开关曲线中开态电流随着光功率密度的增加从4.3 nA增加到98 nA。此外,响应时间也是光电探测器的关键性能指标。通常,上升时间τr和衰减时间τd指的是光电流从10%上升到90%和从90%衰减到10%的时间间隔[14]图3(e)的响应时间曲线显示,器件的下降时间τd为53.8 ms,能够满足多数光电探测应用的需求。由于受到SiO2衬底高密度晶格缺陷的严重影响[15],器件的上升时间被延长至169 ms。
通过施加-60 V至60 V的栅极电压,进一步研究了α-In2Se3器件的转移曲线。当漏源电压为0.1~2.0 V时,器件的转移曲线如图3(f)所示,输出电流Ids随着栅极电压增大而增大,展现出n型导电行为。此外,电流开关比是评价场效应晶体管(field effect transistor,FET)的另一个重要参数,它是通过转移曲线的最大与最小漏电流的比值来确定的,从图中提取出α-In2Se3器件在2 V偏压下的电子开关比高达105。为了评价α-In2Se3的电子输运性质,计算了场效应电子迁移率μ,计算公式为:
μ=dIdsdVg×LWCiVds
(1)
式中,Vg为栅极电压,LW分别为沟道长度和宽度,Ci为相关介质层单位面积的电容(Ci=ε0εr/d,其中ε0为真空介电常数,εr为相对介电常数,d为SiO2介质层厚度)。由此计算出2 V偏压下α-In2Se3 FET的电子迁移率为0.36 cm2 /(V·s),低于剥离α-In2Se3制备的器件[16-17]
已知响应度R表示光电探测器中光电转换效率的能力;比探测率D*描述了探测器的灵敏度,显示了探测弱光信号的能力。RD*是决定光电探测器性能的关键参数,其中R的值可以由式(2)计算出[18]
R=IphPA
(2)
Iph=Ilight-Idark
(3)
其中,Iph为净光电流,IlightIdark分别为光照条件下产生的电流和暗电流,P为照明功率密度,A表示器件的有效面积。D*的值可由式(4)计算出[18]
D*=RA2eIdark
(4)
式中,e是电子电荷。R随着光功率密度的增加而下降,如图3(g)所示,这可能是由缺陷能级引起的俄歇复合过程饱和导致光致载流子寿命缩短所致[19]。32.8 nm α-In2Se3器件在405 nm、532 nm、635 nm和808 nm四种不同波长光下,RD*随光功率密度的变化趋势相似。在波长为635 nm、光照强度约为0.02 mW/cm2的弱光功率密度下,最大R可达300 A/W,最大D*可达2×1013 Jones。另外,α-In2Se3RD*性能参数随厚度变化的柱状图如图3(h)所示,从图中可以看出,随着α-In2Se3厚度的增加,光响应性明显增强。在波长为635 nm以及光强为1 mW/cm2照射下,随着α-In2Se3厚度从10 nm增加到50 nm,R从8.5 A/W增加到900 A/W,D*从1×1012 Jones增加到3×1012 Jones。
图3(i)所示,通过幂律公式IphPβ对光电流和光功率的曲线进行拟合,其中指数β为拟合系数。经拟合确定β值为0.5,这一亚线性结果表明材料与衬底的接触界面存在陷阱态,影响到光生载流子的俘获和复合[20-21]
图3(j)提供了波长和比探测率(响应度)的关系图,直观地表达了本实验制备的32.8 nmα-In2Se3这种厚度的器件对波长为400~808 nm范围内的探测性能情况,其中在同一光功率密度P≈3 mW/cm2下635 nm处的响应度和比探测率最优,而在靠近800 nm左右的近红外区域性能下降明显。这种有效的调制和光电性能的改进表明可以尝试通过改变其厚度的能带工程来设计和优化基于二维α-In2Se3材料制作出的光电探测器的探测性能。
3不同厚度、不同光照强度下α-In2Se3 光电探测器的光电性能
Fig.3Photoelectric performance of α-In2Se3 photodetectors with different thicknesses and different incident illuminance
3 偏振特性
为了研究α-In2Se3纳米片的各向异性,在云母衬底上制备了具有8环形电极的α-In2Se3光电晶体管,其在不同厚度、不同光照强度下的偏振特性如图4所示。图4(a)图4(c)分别是厚度为50 nm 和10 nm的α-In2Se3光电晶体管的光学图像,这种厚度差异可以从光学显微镜图像的亮度来区分。为了探究晶体管沿不同方向电极测量的性能差异,采取两个电极之间的夹角来命名测试结果。图4中(b)和(d)分别为(a)和(c)器件在405 nm波长光照下、光强为33.83 mW/cm2时的Ids-Vds特性曲线。从图中可以看出,由90°、135°和180°方向的电极与0°电极组成的器件的Ids-Vds曲线对比,施加相同偏压时所测试的电流有明显差异,从整个Ids-Vds电压曲线来看,变化趋势也有明显的偏差,表明了α-In2Se3纳米片具有光电导各向异性。当厚度为10 nm和50 nm时,器件的最大和最小的电导比分别为1.68和1.64。在室温条件下,无栅电压Vg时,α-In2Se3纳米片的Ids-Vds特性呈线性函数关系,表明α-In2Se3纳米片与电极之间为欧姆接触。
鉴于α-In2Se3的电学各向异性,进一步研究了器件的偏振敏感特性。通过旋转偏振片改变线偏振光的偏振角来测试不同偏振角下器件的光电流响应变化趋势,其中偏振角度θ和材料方向的关系如图4(e)插图所示。由图4(e)可以看出,光电流随角度从0°到360°成周期性变化。可以发现,光电流在扶手椅方向(armchair direction,AC方向)即偏振角为90°或270°时达到最大值,而在和之字形方向(zigzag direction,ZZ方向)偏振角为0°或180°时光电流被抑制。图4(f)绘制了α-In2Se3器件归一化光电流随偏振角变化的极坐标图。同时,将提取值拟合[22]为:
4不同厚度、不同光照强度下α-In2Se3 光电探测器的偏振特性
Fig.4Polarization characteristic of α-In2Se3 photodetectors with different thicknesses and different incident illuminance
Iph=Iphmaxcos2(θ+ϕ)+Iphminsin2(θ+ϕ)
(5)
式中,θ为偏振角,φ为拟合参数,定义IphmaxIphmin分别为最大光电流和最小光电流。因此,器件在635 nm下光电流各向异性比(IphmaxIphmin的比值)约为4,优于多数基于p-n结或单一各向异性偏振敏感光电探测器[23-30]。综上所述,实验制备的α-In2Se3纳米片为构建具有高偏振灵敏度的二维光电探测器提供了新的材料候选。
对于偏振敏感光电探测器来说,各向异性比是关键的参数,表1收集对比了不同材料的偏振性能,本研究中的α-In2Se3纳米片光电流各向异性比计算为4,优于表1内先前报道的其他二维材料偏振光电探测器。
1偏振敏感光电探测器对比
Tab.1Comparison of polarization sensitive photodetectors
4 结论
本研究通过改良型的PVD法成功制备了厚度可控、大尺寸的高质量α-In2Se3纳米片。基于不同厚度α-In2Se3纳米片的光探测器在可见光至近红外波段表现出优异的宽带响应特性。当厚度为32.8 nm时,在635 nm波长光照下,器件的RD*分别达到最大值300 A/W和2 × 1013 Jones,响应速度为169 ms/53.8 ms。这些优异的光电性能表明α-In2Se3纳米片在光电探测领域具有巨大的应用潜力。值得注意的是,α-In2Se3在635 nm处的光电流各向异性比达到4。这些发现为二维α-In2Se3的厚度调控提供了实验依据,并为偏振敏感光探测带来了更多的可能性。此外,本研究对α-In2Se3厚度与光电特性关系的探讨,可为后续基于该材料的光电特性研究提供重要的厚度调整和优化的理论依据。
1α-In2Se3的生长与材料表征图像
Fig.1Growth and material characterization of α-In2Se3
2α-In2Se3光电探测器的光学图像和AFM表征图
Fig.2Optical image and AFM characterization of α-In2Se3 photodetector
3不同厚度、不同光照强度下α-In2Se3 光电探测器的光电性能
Fig.3Photoelectric performance of α-In2Se3 photodetectors with different thicknesses and different incident illuminance
4不同厚度、不同光照强度下α-In2Se3 光电探测器的偏振特性
Fig.4Polarization characteristic of α-In2Se3 photodetectors with different thicknesses and different incident illuminance
1偏振敏感光电探测器对比
Tab.1Comparison of polarization sensitive photodetectors
LONG M S, WANG P, FANG H H,et al. Progress,challenges,and opportunities for 2D material based photodetectors[J]. Advanced Functional Materials,2019,29(19):1803807.
ZHAO B, SHEN D Y, ZHANG Z C,et al.2D metallic transition-metal dichalcogenides:structures,synthesis,properties,and applications[J]. Advanced Functional Materials,2021,31(48):2105132.
曹奕成. 纳米材料的量子效应及其应用[J]. 信息记录材料,2023,24(12):44-46. CAO Y C. Quantum effects of nanomaterials and their applications[J]. Information Recording Materials,2023,24(12):44-46.(in Chinese)
LI J Y, LI H D, NIU X B,et al. Low-dimensional In2Se3 compounds:from material preparations to device applications[J]. ACS Nano,2021,15(12):18683-18707.
LYU Q, MA H Y, LYU R T. Energy band engineering of two-dimensional transition metal dichalcogenides[J]. Chinese Science Bulletin,2023,68(14):1829-1843.
TANG B, HOU L F, SUN M,et al. UV-SWIR broad range photodetectors made from few-layer α-In2Se3 nanosheets[J]. Nanoscale,2019,11(27):12817-12828.
DENG Z X. Anisotropic electronic transport properties in two-dimensional ferroelectric In2Se3 monolayer[J]. Chemical Physics,2023,568:111822.
ZHAO Y, PEI Y F, ZHANG Z C,et al. Memristor based on α-In2Se3 for emulating biological synaptic plasticity and learning behavior[J]. Science China Materials,2022,65(6):1631-1638.
BOTCHA V D, HONG Y H, HUANG Z H,et al. Growth and thermal properties of various In2Se3 nanostructures prepared by single step PVD technique[J]. Journal of Alloys and Compounds,2019,773:698-705.
WANG S Y, YANG Z H, WANG D,et al. Strong anisotropic two-dimensional In2Se3 for light intensity and polarization dual-mode high-performance detection[J]. ACS Applied Materials & Interfaces,2023,15(2):3357-3364.
俞书昕, 金泽辛, 陈容, 等. 二维层状In2Se3材料的快速制备及结构特性研究[J]. 人工晶体学报,2023,52(10):1787-1792. YU S X, JIN Z X, CHEN R,et al. Rapid preparation and structural characterization of two-dimensional layered In2Se3 materials[J]. Journal of Synthetic Crystals,2023,52(10):1787-1792.(in Chinese)
LIU B, LYU F J, TANG B,et al. Contact properties of two-dimensional ferroelectric α-In2Se3[J]. ACS Applied Electronic Materials,2021,3(10):4604-4610.
ZHANG W, SU Q, ZHANG B W,et al.α-In2Se3 nanostructure-based photodetectors for tunable and broadband response[J]. ACS Applied Nano Materials,2023,6(10):8795-8803.
XUE R Y, SHAO Z T, YANG X X,et al. Self-powered photoelectrochemical photodetectors based on electrochemically exfoliated In2Se3 nanosheets[J]. ACS Applied Nano Materials,2022,5(5):7036-7041.
KUFER D, KONSTANTATOS G. Highly sensitive,encapsulated MoS2 photodetector with gate controllable gain and speed[J]. Nano Lett,2015,15(11):7307-7313.
GAO X X, LIU H Y, ZHANG J C,et al. Thin-film transistors from electrochemically exfoliated In2Se3 nanosheets[J]. Micromachines(Basel),2022,13(6):956.
ISLAND J O, BLANTER S I, BUSCEMA M,et al. Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors[J]. Nano Lett,2015,15(12):7853-7858.
LI F, TAO R, CAO B L,et al. Manipulating the light-matter interaction of PtS/MoS2 p-n junctions for high performance broadband photodetection[J]. Advanced Functional Materials,2021,31(36):2104367.
ABNAVI A, AHMADI R, GHANBARI H,et al. Flexible high-performance photovoltaic devices based on 2D MoS2 diodes with geometrically asymmetric contact areas[J]. Advanced Functional Materials,2023,33(7):2210619.
YANG M M, GAO W, SONG Q Q,et al. Universal strategy integrating strain and interface engineering to drive high-performance 2D material photodetectors[J]. Advanced Optical Materials,2021,9(15):2100450.
PARK J, KIM S, YANG M,et al. Nature of photoconductivity in self-powered single-atomic-layered Nb-doped WSe2 phototransistors[J]. ACS Photonics,2023,10(8):2930-2940.
ZHENG T, YANG M M, SUN Y M,et al. A solution-fabricated tellurium/silicon mixed-dimensional van der Waals heterojunction for self-powered photodetectors[J]. Journal of Materials Chemistry C,2022,10(18):7283-7293.
QIAO J, FENG F, WANG Z M,et al. Highly in-plane anisotropic two-dimensional ternary Ta2NiSe5 for polarization-sensitive photodetectors[J]. ACS Applied Materials & Interfaces,2021,13(15):17948-17956.
WANG Q S, ZHENG J C, HE Y,et al. Robust edge photocurrent response on layered type Ⅱ Weyl semimetal WTe2[J]. Nature Communications,2019,10(1):5736.
ZHANG F, YU Y L, MO Z X,et al. Alloying-engineered high-performance broadband polarized Bi1.3In0.7Se3 photodetector with ultrafast response[J]. Nano Research,2022,15(9):8451-8457.
LI G, YIN S Q, TAN C Y,et al. Fast photothermoelectric response in CVD-grown PdSe2 photodetectors with in-plane anisotropy[J]. Advanced Functional Materials,2021,31(40):2104787.
YU Y L, XIONG T, GUO Z F,et al. Wide-spectrum polarization-sensitive and fast-response photodetector based on 2D group IV-VI semiconductor tin selenide[J]. Fundamental Research,2022,2(6):985-992.
ZHANG J B, DUAN L F, ZHOU N,et al. Modulating the function of GeAs/ReS2 van der Waals heterojunction with its potential application for short-wave infrared and polarization-sensitive photodetection[J]. Small,2023,19(33):e2303335.
WAN P, JIANG M M, WEI Y,et al. Junction-enhanced polarization sensitivity in self-powered near-infrared photodetectors based on Sb2Se3 microbelt/n-GaN heterojunction[J]. Advanced Optical Materials,2023,11(3):2202080.
AHMAD W, REHMAN M U, YOUNIS U,et al. Interlayer charge transition and broadband polarization photodetection and imaging based on In2Se3/ReS2 van der Waals heterostructure[J]. Laser & Photonics Reviews,2025,19(1):2400819.
WANG X T, LI Y T, HUANG L,et al. Short-wave near-infrared linear dichroism of two-dimensional germanium selenide[J]. Journal of the American Chemical Society,2017,139(42):14976-14982.
LAI J W, LIU X, MA J C,et al. Anisotropic broadband photoresponse of layered type-Ⅱ Weyl semimetal MoTe2[J]. Advanced Materials,2018,30(22):e1707152.
YAN Z, YANG H, YANG Z,et al. Emerging two-dimensional tellurene and tellurides for broadband photodetectors[J]. Small,2022,18(20):e2200016.
PAN Y, ZHAO Q X, GAO F,et al. Strong in-plane optical and electrical anisotropies of multilayered γ-InSe for high-responsivity polarization-sensitive photodetectors[J]. ACS Applied Materials & Interfaces,2022,14(18):21383-21391.
CUI Y, ZHOU Z Q, WANG X H,et al. Wavelength-selectivity polarization dependence of optical absorption and photoresponse in SnS nanosheets[J]. Nano Research,2021,14(7):2224-2230.
LIU C Y, ZHENG T, SHU K X,et al. Polarization-sensitive self-powered Schottky photodetector with high photovoltaic performance induced by geometry-asymmetric contacts[J]. ACS Applied Materials & Interfaces,2024,16(11):13914-13926.
XIA F N, WANG H, JIA Y C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics[J]. Nature Communications,2014,5:4458.
WANG H W, CHEN M L, ZHU M J,et al. Gate tunable giant anisotropic resistance in ultra-thin GaTe[J]. Nature Communications,2019,10(1):2302.
FAN A Q, ZHANG Q, REN Z B,et al. Layer number and stacking engineering of MoS2 crystals for high-performance polarization-sensitive photodetector[J]. ACS Applied Materials & Interfaces,2024,16(43):59626-59636.