摘要
计算机辅助气动设计对飞行器外形优化至关重要,为进一步提升气动特性建模效率,提出了面向飞行器的气动力系数智能预测方法AeroPointNet。该方法以几何数模的三维点云表征为输入,构建了高效提取局部与全局几何特征的神经网络架构。为捕捉流动条件的变化,AeroPointNet将物理信息与几何特征融合,并引入两种加权注意力机制来动态调整权重,有效解决了权重失衡问题。实验结果表明,AeroPointNet实现了较传统数值方法3个数量级以上的气动力系数计算效率提升,升力系数和阻力系数的平均相对误差均保持在5%以下。
Abstract
Computer-aided aerodynamic design is crucial for aircraft geometry optimization. To further improve the efficiency of aerodynamic characteristic modeling, an aircraft-oriented intelligent aerodynamic coefficient prediction method, AeroPointNet, was proposed. A three-dimensional point cloud representation of geometric models was employed as input, and a neural network architecture was constructed to efficiently extract both local and global geometric features. To capture variations in flow conditions, physical information was fused with geometric features, and two weighted attention mechanisms were introduced to dynamically adjust the weights, by which the problem of weight imbalance was effectively addressed. Experimental results show that AeroPointNet achieves a computational efficiency improvement of over three orders of magnitude in aerodynamic coefficient prediction compared with traditional numerical methods. The mean relative errors of lift and drag coefficients are kept below 5%.
Keywords
气动设计是飞行器概念设计中的关键环节,在航空航天领域具有极其重要的意义,它直接影响着飞行器的性能,如机动性和安全性[1]。计算流体力学(computational fluid dynamics,CFD)利用计算机和数值计算方法对飞行器周围的气动流场进行模拟,是气动分析与设计的重要工具。然而,CFD模拟需要繁重的数值迭代和计算,通常面临着计算开销大、内存要求高和收敛速度慢等问题,已成为阻碍高效数值技术发展的瓶颈[2]。
得益于计算能力的提升和海量试验数据的积累,以深度学习为代表的人工智能方法被广泛应用于解决复杂的科学计算问题,包括电磁、气象海洋、生命科学、航空航天等领域,为多学科设计优化提供了快速的分析工具,并逐渐成为一种新的研究范式[3-5]。近年来,采用深度学习方法来解决流体问题已成为研究热点,越来越多的研究人员将其应用于网格生成[6-7]、偏微分方程求解[8]和流场预测[9]等关键任务。其中,基于卷积神经网络(convolutional neural network,CNN)的代理模型已成为智能流体领域的重要建模方法[10-11]。Thuerey等[12]通过像素化表征将非均匀流场数据投影到均匀的二维笛卡儿网格上,并通过U-Net网络来学习流场特征。训练后的网络对压力和速度的预测平均相对误差小于3%。虽然该方法在加速流场预测方面展现出巨大的潜力,但像素化表征策略会在平滑的边界上引入粗糙度,造成几何信息的缺失,严重干扰边界上的流动特征提取[13]。
为更好地表征几何特征,已有学者提出基于距离场的几何建模方法[14-15]。Guo等[16]提出了一种基于符号距离函数的端到端预测模型,为各种几何外形提供了通用的表示,消除了物体内部的冗余计算并保持了边界平滑度。坐标变换方法是保留几何特征的另一有效途径[17]。Hu等[18]将流场从非均匀物理域变换到均匀计算域,并在计算域上对流场变量构建预测模型,但这种变换方法只适用于结构化网格。此外,还有一些研究采用几何参数化的方法来表征几何特征[19-20]。Wang等[21]将翼型形状参数化为控制点坐标,然后将其输入神经网络获得预测的流场。此类方法的控制点或几何参数数量严重依赖于主观选择,且通常需要两阶段建模,增加了训练开销。近年来,图神经网络(graph neural network,GNN)因其在捕捉不规则数据拓扑结构上的优势,逐渐应用于流体领域[22-23]。Li等[24]提出了一种基于图卷积网络的气动设计优化框架来高效学习潜在的物理定律。然而,GNN在流场建模中的应用受到其高计算复杂度和大内存需求的限制。为增强模型的物理可解释性,物理信息神经网络(physics-informed neural network,PINN)得到了广泛关注[25-27]。PINN通过将控制方程嵌入神经网络的损失函数中,实现了对物理规律的显式约束。尽管如此,PINN仍面临预测精度不足和收敛性差等关键挑战,难以满足气动设计快速迭代的需求。
为解决上述研究存在的不足,Kashefi等[28]首次提出基于二维点云的智能流场预测方法,直接将网格顶点视为点云,通过PointNet网络学习点坐标与物理变量之间的映射。然而,目前大部分研究仍聚焦于二维外形,对三维外形的研究尚少。在气动设计中,升力系数和阻力系数是衡量飞行器气动性能的关键参数,二者的比值(升阻比)直接决定了飞行器的气动效率[29]。优化升阻比是气动设计的核心目标之一,更高的升阻比意味着在相同升力下阻力更小,有助于提升飞行器的整体性能[30]。因此,快速准确地预测升力系数和阻力系数对于优化飞行器的气动外形至关重要,亟须发展更高效、更具泛化能力的三维通用智能建模方法。
为了更高效、精准地预测多种流动条件下不同三维飞行器的升力系数和阻力系数,提出了基于三维点云的气动力系数智能预测方法AeroPointNet。该方法通过融合几何特征与物理信息,并引入加权注意力机制来提升预测精度。
1 AeroPointNet框架
点云数据是一种自然且高效的几何表示形式,相较于传统网格化方法,在处理复杂几何形状和不规则表面时具有巨大优势。然而,在三维外形建模中,高效提取空间几何特征仍是关键挑战。此外,几何特征与物理信息融合时,两者在数据分布和量纲上通常存在差异,可能会导致模型偏重学习某些特征而忽略其他关键特征,造成权重失衡,从而降低预测精度。为了解决上述问题,提出了基于三维点云的气动力系数智能预测方法AeroPointNet。该方法采用结合局部自注意力机制与位置编码的网络结构,以增强几何特征提取能力;同时,引入两种加权注意力机制,有效解决权重失衡问题,提高模型对气动力系数的预测精度及对复杂流场的泛化能力。
1.1 整体框架
AeroPointNet的整体框架如图1所示,输入为点云数据,其中每个点云包含若干三维坐标点(x,y,z)。利用最远点采样(farthest point sampling,FPS)对点云进行预处理,从原始点云中选择2 000个点,确保输入数据具有相同的维度。将经过预处理后的点云输入多层感知机(multilayer perceptron,MLP)中,三维坐标被映射到高维特征空间,便于后续的特征提取。
AeroPointNet构建了以点云变换层为核心的点云变换模块,如图1所示,其输入与输出维度大小是一致的。该模块通过点云变换层实现局部特征的动态聚合与更新,并利用残差连接保留输入信息,从而增强对点云几何特征的建模能力。图2所示为点云变换层,其计算公式如下:
(1)
式中:xi和xj分别表示中心点i及其邻域点j的特征向量;yi表示中心点i更新后的特征向量;X(i)表示中心点i所有邻域点的特征向量集合,邻域点基于K近邻算法确定;q、k与v均为特征的线性映射函数;γ为生成注意力向量的非线性映射函数,由MLP实现;ρ为Softmax函数,用于归一化注意力向量,得到注意力权重;⊙表示逐元素相乘。此外,为了捕获各点之间的几何关系,点云变换层中引入了参数化位置编码函数,具体形式为:
(2)
式中,pi和pj为点i和j的三维坐标,编码函数θ由包含两个线性层和 ReLU的 MLP 构成,因此位置编码是可学习的。点云变换层的本质就是针对当前输入点云的每个点,利用自身和K个邻居的几何特征以及位置编码共同计算注意力权重,从而动态更新该点的几何特征。
图1AeroPointNet 整体框架
Fig.1Overall framework of AeroPointNet
图2点云变换层
Fig.2Point cloud transformation layer
在特征提取过程中,降采样模块通过逐步减少点云中的点数来实现数据规模的压缩。假设输入点云表示为P1,输出点云表示为P2。首先对P1进行最远点采样,得到点集。随后,使用K近邻算法(K=16)在P1上为P2的每个点构建局部邻域。对于每个邻域特征,通过多个MLP来实现维度变换。最后,采用局部最大池化操作在P2每个点的邻域内沿邻域点维度取最大值,从而选取最显著的特征作为该点的更新表示。
在整个框架中,降采样模块与点云变换模块交替进行,共同实现点云规模的降维和局部特征的提取与更新。类似于卷积操作,这种设计通过逐模块处理逐步扩大对点云全局几何信息的捕获。点云规模从初始的2 000个点依次减少到500、125、31和7,而特征维度从32逐步增加到64、128、256和512。在框架的最后阶段,通过全局平均池化操作沿点维度对所有点的特征取均值,生成一个512维的全局几何特征向量。随后,利用MLP对其进行非线性映射,提取更高层次的几何特征。将上述几何特征与马赫数、攻角和侧滑角组成的3维物理信息一同输入注意力机制模块中进行处理,如图1所示。最后,通过MLP得到气动力系数的预测结果。AeroPointNet 框架通过结合局部特征提取与全局关系建模,有效提升了气动力系数的预测精度,并增强了对复杂气动场景的泛化能力。
1.2 加权注意力机制
AeroPointNet创新性地引入两种加权注意力机制,旨在解决权重失衡问题,分别是融合式加权注意力机制和分离式加权注意力机制,如图3所示。它们通过动态调整权重,实现网络对几何特征和物理信息的均衡学习,从而提升整体建模的精度。
图3加权注意力机制
Fig.3Weighted attention mechanism
融合式加权注意力机制先将几何特征与物理信息拼接,然后通过MLP联合建模计算注意力权重,捕捉二者的依赖关系。其计算过程为:
(3)
(4)
(5)
其中:f∈512表示特征向量,c∈3表示物理信息,i∈515表示f与c拼接后的结果。w表示注意力权重,W1∈16×515和W2∈515×16为权重矩阵,b1∈16和b2∈515为偏置向量。BN表示批归一化,φ为Mish激活函数,σ为Sigmoid激活函数。
分离式加权注意力机制通过两个独立的MLP网络分别计算几何特征与物理信息的注意力权重,其中几何特征的权重由物理信息得到,而物理信息的权重则取决于几何特征,捕捉二者的交互关系。其计算过程可描述为:
(6)

(7)
(8)
其中,wf和wc分别表示f和c的注意力权重。这里的权重矩阵大小有所不同:W1∈16×3、W2∈512×16、W′1∈16×512和W′2∈3×16。同样地,偏置向量有b1∈16、b2∈512、b′1∈16和b′2∈3。其他符号与融合式加权注意力机制保持一致。最终注意力机制模块的输出为:
(9)
这种组合策略能有效解决权重失衡问题,确保网络可以动态且均衡地学习不同外形、不同流动条件下的气动力变化规律,实现对复杂气动场景的高精度预测。
2 基准测试集
基准数据集包含196个导弹外形及相应的数值模拟结果(数据集开源在https://github.com/qisongxiao/AeroPointNet)。对于流动条件,马赫数3个,取值为{1.5,2,2.5};侧滑角5个,取值为{0°,10°,20°,30°,40°};攻角61个,取值为{0°,1°,2°,···,59°,60°}。因此,每个导弹对应有915种流动条件,基准数据集共有179 340个样本。随机选择20个导弹作为外形基准测试集,编号为{17,32,33,45,50,54,70,84,86,99,122,130,147,149,154,170,175,177,187,196},其他导弹作为外形基准训练集,各导弹的流动条件包含全部915种。图4所示为70号、130号和187号导弹的几何外形,三者在外形特征、尾翼布局以及几何细节上存在明显差异。
图4部分导弹几何外形
Fig.4Geometries of some missiles
为了充分检验模型对流动条件的泛化能力,构建了5个流动条件基准数据集。具体而言,从全部915种流动条件中随机选取183种作为测试流动条件,将训练集中对应的这些流动条件数据删除。因此,测试集包含随机选择的20个导弹外形及对应的183种流动条件,训练集则包含剩下的176个导弹外形及对应的732种流动条件。为了增加样本选择的随机性,进行了5次数据集的随机划分,每次随机选取20个导弹外形和183种流动条件作为基准测试集,以此确保实验评估的客观性和稳健性。
数据样本使用四川梅卡尔科技有限责任公司开发的PiFlow软件进行超声速流场定常数值模拟[31]。边界条件设置为压力远场,物面采用滑移无穿透边界。在计算过程中应用龙格-库塔隐式算法,求解格式为中心差分格式,所求解的方程为欧拉方程。在NVIDIA A100上基于有限体积法进行数值模拟,所有样本平均计算时间为11 min。图5所示为70号导弹在马赫数为2、侧滑角为10°和攻角为20°时的数值模拟结果。
图570号导弹数值模拟结果
Fig.5Numerical simulation results for missile No.70
3 实验及结果分析
为验证AeroPointNet的气动力系数预测效果,选取深度学习领域的7个点云基准网络模型进行了对比,分别是:PointNet[32]、PointNet++[33]、PointCNN[34]、PointConv[35]、Point Transformer[36]、PointMLP[37]和PointNeXt[38]。网络训练基于AdamW优化器,初始学习率为0.001,批次大小为256,训练平台为NVIDIA A100,训练总轮次为200。气动力系数和点云数据基于Max-Min方法进行归一化,预测结果需要逆归一化恢复到原始区间。
使用三个误差指标来评估预测效果:平均相对误差(mean relative error,MRE)、平均绝对误差(mean absolute error,MAE)和均方误差(mean squared error,MSE),分别用Er、Ea和Es来表示。计算如下:
(10)
(11)
(12)
其中,Ci和分别表示第i个样本的真实和预测的气动力系数,N表示样本总数。在攻角为0时,气动力系数的真实值很小,计算平均相对误差会导致误差比例被严重放大,从而影响整体统计结果。因此,在后续的结果分析中,攻角为 0 的实验数据不参与计算。在所有表格中,粗体表示最优值。
3.1 外形泛化实验
本小节的实验结果均基于外形基准测试集。表1所示为不同模型的升力系数与阻力系数预测误差及参数量对比。
表1不同模型气动力系数预测误差及参数量对比
Tab.1Comparison of aerodynamic coefficient prediction errors and parameter sizes for different models
与PointNeXt相比,AeroPointNet 将升力系数的MRE、MAE和MSE分别降低了75.93%、64.24%和85.80%,将阻力系数的MRE、MAE和MSE分别降低了79.51%、72.81%和91.18%,参数量减少了73.95%。AeroPointNet将气动力系数预测的MRE首次降低到2%以下,而其他模型均在2%以上,这充分说明了AeroPointNet在精准气动力系数预测中的巨大优势。AeroPointNet的平均预测时间为0.11 s,相较于数值模拟的平均时间11 min,在计算效率上提升了3个数量级。本小节随机选用马赫数为1.5和侧滑角为30°时的一个样本进行展示。图6所示为AeroPointNet对升力系数与阻力系数的预测结果及绝对误差。可以看到,预测值与真实值非常接近,拟合程度很高,误差大致在-0.25到0.25之间,且随攻角的分布较为均匀。图7所示为AeroPointNet对升力系数和阻力系数的平均相对误差变化曲线及95%置信区间。可以看出,在攻角较小时,误差相对较大,但随着攻角的增大,误差迅速下降并趋于稳定。在攻角大于10°后,升力系数和阻力系数的平均相对误差均基本维持在2%以下,并且95%置信区间的范围也大幅缩小,表明模型在大攻角条件下具有更高的预测精度和稳定性。
图6气动力系数预测结果及绝对误差(外形基准测试集)
Fig.6Prediction results and absolute errors of aerodynamic coefficients (appearance benchmark test set)
图7气动力系数平均相对误差变化曲线及 95%置信区间
Fig.7Variation of mean relative error for aerodynamic coefficients and 95% confidence intervals
图8所示为不同模型的升力系数与阻力系数预测结果及绝对误差对比。在图8(a)和图8(c)中,AeroPointNet的预测曲线与真实曲线几乎完全重叠。在攻角大于40°的情况下,AeroPointNet依然保持了极高的预测精度,而其他模型则出现了较明显的偏差。从图8(b)和图8(d)可以观察到,AeroPointNet在整个攻角范围内的误差最小,且预测误差的波动幅度小于其他模型,表现出较好的稳定性和鲁棒性。总体来说,AeroPointNet在不同攻角条件下均能稳定地提供高精度的气动力系数预测结果,这验证了其在复杂气动场景中的强泛化能力。
为了探究两种加权注意力机制的作用,进行了消融实验,考虑四种情况:无注意力机制、只使用分离式加权注意力机制、只使用融合式加权注意力机制以及两者同时使用。表2所示为AeroPointNet在不同注意力机制下升力系数和阻力系数预测误差及参数量对比。当不使用注意力机制时,模型的预测误差最大,表明几何特征与物理信息未能有效融合,模型难以准确捕捉不同特征的重要性差异。加入分离式或融合式加权注意力机制后,误差明显降低。其中,分离式加权注意力机制主要增强了几何特征与物理信息的独立表达能力,融合式加权注意力机制则更加侧重于不同类型信息之间的融合学习。与不使用注意力机制相比,同时使用两种机制使升力系数的MRE、MAE和MSE分别降低了63.79%、57.00%和80.10%,使阻力系数的MRE、MAE和MSE分别降低了65.68%、61.53%和83.23%,说明两者的结合进一步提升了模型的性能,体现出更强的协同效应,更好地解决了权重失衡问题。此外,同时使用两种加权注意力机制是轻量化的,与不使用注意力机制相比,模型参数量仅增加2.89%,对模型的复杂度几乎没有影响。图9展示了四种情况下模型在训练过程中的损失变化趋势,当同时使用两种机制时,模型具有更快的收敛速度和更低的损失,这进一步验证了两种加权注意力机制的有效性和合理性。
图8不同模型气动力系数预测结果及绝对误差对比
Fig.8Comparison of aerodynamic coefficient prediction results and absolute errors for different models
表2不同注意力机制下气动力系数预测误差及参数量对比
Tab.2Comparison of aerodynamic coefficient prediction errors and parameter sizes with different attention mechanisms
图9不同注意力机制下损失变化曲线
Fig.9Loss curves with different attention mechanisms
为了检验采样规模对预测精度和计算效率的影响,在4种采样规模下对AeroPointNet的预测性能进行了对比,结果如表3所示。可以看出,采样规模与预测精度之间呈正相关关系,与计算效率则呈负相关关系。综合考虑预测精度和计算效率,最终选择了2 000点作为采样规模。
3.2 流动条件泛化实验
本小节的实验结果均基于5个流动条件基准测试集。各模型分别在5个基准训练集上独立训练,并在相应的测试集上进行预测。表1中包含了不同模型在5个流动条件基准测试集上的气动力系数预测误差及参数量对比,其中各项指标均取5次实验结果的平均值。
与Point Transformer相比,AeroPointNet 将升力系数的MRE、MAE和MSE分别降低了64.55%、53.17%和84.72%,将阻力系数的MRE、MAE和MSE分别降低了38.28%、22.05%和46.51%,同时参数量减少了61.83%。AeroPointNet 的平均相对误差保持在5%以下,具有明显的精度优势。图10所示为AeroPointNet在第1个流动条件基准测试集上对升力系数与阻力系数的预测结果及绝对误差。可以看出,模型的预测值与真实值基本吻合,尽管预测效果低于在外形基准测试集上的表现,但绝对误差仍较小,说明AeroPointNet在面对复杂多变的流动条件和几何外形时依然具备较强的泛化能力与预测稳定性。
表3不同采样规模下气动力系数预测误差及计算开销对比
Tab.3Comparison of aerodynamic coefficient prediction errors and computational costs with different sampling sizes
图10气动力系数预测结果及绝对误差(流动条件基准测试集)
Fig.10Prediction results and absolute errors of aerodynamic coefficients (flow condition benchmark test set)
4 结论
本文提出了一种基于三维点云的气动力系数智能预测方法AeroPointNet,通过结合局部特征提取与全局关系建模,高效捕捉点云数据中的几何特征,并将其与物理信息融合。针对融合带来的权重失衡问题,引入了两种加权注意力机制来动态调整权重,实现了网络对几何特征和物理信息的均衡学习。实验结果表明,AeroPointNet能够快速预测气动力系数,且预测效果优于现有的智能方法,升力系数和阻力系数的平均相对误差均保持在5%以下。
在未来的研究中,将进一步探索AeroPointNet与物理信息的深度融合,引入更多的气动机理和物理约束来提升模型的泛化能力和可解释性。计划将AeroPointNet拓展至包含非定常效应的复杂流动场景,如非定常涡流、分离流等,实现对更广泛的流动条件与应用场景的覆盖。此外,结合AeroPointNet的高效特性,未来还可进一步与飞行器外形智能优化设计相结合,推动智能气动设计在实际工程中的落地应用。
致谢
本工作的数据生成部分是在四川梅卡尔科技有限责任公司王爱华工程师的帮助下完成的,特此致谢!




